Safeguarding California: Preparing for Climate Risks

an update to the 2009 California Climate Adaptation Strategy

Public Workshop & Listening Session

Dr. Jayant Sathaye International Energy Studies Group Lawrence Berkeley National Laboratory

ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

Jayant Sathaye

With Assistance from Other Authors:

Larry Dale, Peter Larsen, and Gary Fitts
Lawrence Berkeley National Laboratory (LBNL)
Sarah Lewis and Kevin Koy
University of California at Berkeley
Andre Lucena
Federal University of Rio de Janeiro

Session:

Safeguarding California: Preparing for Climate Risks
Truckee, CA
11 October 2013

Presentation Outline

- I. Context
- II. Selected Review of International Impact Analyses
- III. U.S. Case Study: California
- IV. Lessons Learned

Increasing Atmospheric CO₂

Data from Climate Monitoring and Diagnostics Lab., NOAA. Data prior to 1974 from C. Keeling, Scripps Inst. Oceanogr.

Fr: K Trenbreth, Climate Analysis Section, NCAR IPCC Lead Author

Global Mean Temperatures are Rising Faster Over Time.

Evidence for Global Warming is Unequivocal

Since 1970, Rise in:

- Global surface temperatures
- Tropospheric temperatures
- Global sea surface temperatures (SSTs),
 ocean temperatures, global sea level
- Water vapor
- Rainfall intensity
- Precipitation extratropics
- Hurricane intensity
- Drought
- Extreme high temperatures
- Heat waves
- Ocean acidity

Decrease in:

- NH Snow extent
- Arctic sea ice
- Glaciers
- Cold temperatures

Fr: K Trenbreth, Climate Analysis Section, NCAR IPCC Lead Author

Selected Research List: Global, National and Local

Preliminary Results: Do not cite or reference.

Temperatures in California are Predicted to Rise Significantly

Striking difference is in degree of consensus among projections of temperature and precipitation

Aggregation Distorts Conception of Temperature Change

(Hayhoe et al PNAS 2004)

HOW TO CHARACTERIZE THE CHANGE IN TEMPERATURE, 20	70-2099, USIN	G HADCM3	
	EMISSION S	EMISSION SCENARIO**	
	A1fi	B1	
Change in global average annual temperature	4.1	2	
Change in statewide average annual temperature in California*	5.8	3.3	
Change in statewide average winter temperature in California*	4	2.3	
Change in statewide average summer temperature in California*	8.3	4.6	
Change in LA/Sacramento average summer temperature	~10	~5	
*Change relative to 1990-1999. Units are °C			

Overview of Research Tasks

- Assess the vulnerability of ...
 - electricity infrastructure to warming temperatures.
 - electricity infrastructure to wildfires.
 - electricity, natural gas, and other energy infrastructure to sea level rise and extreme events.

Presentation Context:

Parameter Impacts on Energy Demand and Supply

Hydro-meteorological and/or climate parameter	Select energy uses	
Air temperature	Turbine production efficiency, air source generation potential and output, demand (cooling/heating), demand simulation/modeling, solar PV panel efficiency	
Rainfall	Hydro-generation potential and efficiency, biomass production, demand, demand simulation/modeling	
Wind speed and/or direction	Wind generation potential and efficiency, demand, demand simulation/modeling	
Cloudiness	Solar generation potential, demand, demand simulation/modeling	
Snowfall and ice accretion	Power line maintenance, demand, demand simulation/modeling	
Humidity	Demand, demand simulation/modeling	
Short-wave radiation	Solar generation potential and output, output modeling, demand, demand simulation/modeling	
River flow	Hydro-generation and potential, hydro-generation modeling (including dam control), power station cooling water demands	
Coastal wave height and frequency, and statistics	Wave generation potential and output, generation modeling, off-shore infrastructure protection and design	
Sub-surface soil temperatures	Ground source generation potential and output	
Flood statistics	Raw material production and delivery, infrastructure protection and design, cooling water demands	
Drought statistics	Hydro-generation output, demand	
Storm statistics (includes strong winds, heavy rain, hail, lightning)	Infrastructure protection and design, demand surges	
Sea level	Offshore operations, coastal energy infrastructure	

Case Study: Risk to CA Energy Infrastructure

BACKGROUND:

- <u>California Energy Commission</u> funded study to estimate power demand and explore physical risk to CA energy supply system.
- <u>Technical advisory committee</u>, including power sector stakeholders, provide feedback on data sources and methods.
- Estimated risk for <u>A2 and B1 scenarios</u> for three time periods up to 2100

BASIC METHOD:

- Coupled downscaled AOGCM projections to electrical system thermal equations to estimate changes to <u>system capacity and demand from increased ambient temperature</u>.
- Overlaid <u>sea-level rise</u> estimates and <u>wildfire</u> projections with known location of CA energy infrastructure.

s: Do not cite or reference.

Combustion Turbines and Combined-Cycle Power Plants

Change in Turbine Capacity as a Function of Ambient Temperature

• Increased replacement of water to air cooling; air cooling is more sensitive to higher temperatures

End-of-Century Impact Mapping

A2 Scenario, Three AOGCMs Average Peak Capacity Loss in August

Peak demand load vs. peak temperature

Electricity Demand and Supply: Results Summary

• Need for generation

- Peak Period Demand Rise
 - •10 % 21%
- •Peak Period Supply Loss (Natural gas plant)
 - 1% 3.6%
 - 4% 6.2% max
- Transmission and Distribution Loss
 - up to 1% 2%
- Need perhaps 25% additional generation capacity

•Need for transmission capacity

- Sub-stations
 - 2% to 3% loss in capacity
- Transmission lines
 - •7% 8% loss of capacity
 - •Limited data on sizes, locations, and usage capacity
- Need perhaps 25 % additional transmission capacity

Spatial Models of Wildfire Risk

models used for near-term projections

Parisien and Moritz, 2009

Fire and Resource Assessment Program (FRAP)

Projected exposure of transmission lines to fire risk A2 scenario

Source: Westerling; CEC; LBNL

Wildfire Impacts

- The study finds that key transmission corridors can be vulnerable to increased fire frequency.
- It found a 40% increased probability of wildfire exposure for some major transmission lines, including the transmission line bringing hydropower generation from the Pacific Northwest during peak demand periods.

Natural Gas Infrastructure Below Sea Level

Sea Level Rise Impact Mapping & Comparisons

- Projected sea level rise –
 1.4 meters
- 25 power plants and about
 90 substations are
 vulnerable to sea level rise
- Humboldt Bay and
 Antioch Site visits
 indicated that coarse
 vertical resolution of CA
 topography may have
 over- or under-stated
 impacts in power plant
 locations.

Lessons Learned

- Temperature impact on demand is much higher than on supply infrastructure
 - Impact on <u>hydropower supply</u> may increase or decrease generation depending on water supply conditions
- Impact of wildfires could potentially be high
- More <u>data and research</u> are needed to evaluate wildfire and sea level rise impacts on the power sector infrastructure and temperature impacts on electricity transmission and distribution

Published California Articles

- 1. Sathaye, J.A., Dale, L.L., Larsen, P., Fitts, G., Koy, K., Lewis, S., Lucena, A.F.P., 2012. Estimating Risk to California Energy Infrastructure from Projected Climate Change. California Energy Commission. Publication number: CEC-500-2012-057.
- 2. Sathaye, J., L. Dale, P. Larsen, G. Fitts, S. Lewis, K. Koy and A. Lucena. (2013). Estimating impacts of warming temperatures on California's electricity system, Global Environmental Change 23 (2013), pp. 499-511
- 3. Sathaye, J., L. Dale, P. Larsen, G. Fitts, S. Lewis, K. Koy and A. Lucena. (2013). Assessing the risk to California energy infrastructure from projected climate change. *IEEE Power & Energy Magazine*, May 10.1109/MPE.2013.2245582

Acknowledgements for CA Research

List of Authors:

- Jayant Sathaye, Larry Dale, Peter Larsen, and Gary Fitts (LBNL)
- Kevin Koy and Sarah Lewis (Geospatial Innovation Facility at UC-Berkeley)
- Andre Lucena (Federal University of Rio de Janeiro)

Funder:

 Guido Franco (PIER Program at California Energy Commission)

Technical Advisory Committee:

• Pacific Gas and Electric, Southern California Edison, and Sacramento Municipal Utility,